Fractional Poincaré Inequalities for General Measures

نویسندگان

  • CLÉMENT MOUHOT
  • EMMANUEL RUSS
  • YANNICK SIRE
چکیده

We prove a fractional version of Poincaré inequalities in the context of R endowed with a fairly general measure. Namely we prove a control of an L norm by a non local quantity, which plays the role of the gradient in the standard Poincaré inequality. The assumption on the measure is the fact that it satisfies the classical Poincaré inequality, so that our result is an improvement of the latter inequality. Moreover we also quantify the tightness at infinity provided by the control on the fractional derivative in terms of a weight growing at infinity. The proof goes through the introduction of the generator of the Ornstein-Uhlenbeck semigroup and some careful estimates of its powers. To our knowledge this is the first proof of fractional Poincaré inequality for measures more general than Lévy measures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Poincaré-type Inequalities for Cauchy and Other Convex Measures

Brascamp–Lieb-type, weighted Poincaré-type and related analytic inequalities are studied for multidimensional Cauchy distributions and more general κ-concave probability measures (in the hierarchy of convex measures). In analogy with the limiting (infinitedimensional log-concave) Gaussian model, the weighted inequalities fully describe the measure concentration and large deviation properties of...

متن کامل

Weighted Poincaré-type Inequalities for Cauchy and Other Convex Measures1 by Sergey

Brascamp–Lieb-type, weighted Poincaré-type and related analytic inequalities are studied for multidimensional Cauchy distributions and more general κ-concave probability measures (in the hierarchy of convex measures). In analogy with the limiting (infinite-dimensional log-concave) Gaussian model, the weighted inequalities fully describe the measure concentration and large deviation properties o...

متن کامل

On weighted isoperimetric and Poincaré-type inequalities

Weighted isoperimetric and Poincaré-type inequalities are studied for κ-concave probability measures (in the hierarchy of convex measures).

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

Some Weighted Integral Inequalities for Generalized Conformable Fractional Calculus

In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010